Extensions 1→N→G→Q→1 with N=C23 and Q=C3×F5

Direct product G=N×Q with N=C23 and Q=C3×F5
dρLabelID
F5×C22×C6120F5xC2^2xC6480,1205

Semidirect products G=N:Q with N=C23 and Q=C3×F5
extensionφ:Q→Aut NdρLabelID
C23⋊(C3×F5) = C3×C23⋊F5φ: C3×F5/C15C4 ⊆ Aut C231204C2^3:(C3xF5)480,291
C232(C3×F5) = C2×A4×F5φ: C3×F5/F5C3 ⊆ Aut C233012+C2^3:2(C3xF5)480,1192
C233(C3×F5) = C6×C22⋊F5φ: C3×F5/C3×D5C2 ⊆ Aut C23120C2^3:3(C3xF5)480,1059

Non-split extensions G=N.Q with N=C23 and Q=C3×F5
extensionφ:Q→Aut NdρLabelID
C23.(C3×F5) = C3×C23.F5φ: C3×F5/C15C4 ⊆ Aut C231204C2^3.(C3xF5)480,293
C23.2(C3×F5) = A4×C5⋊C8φ: C3×F5/F5C3 ⊆ Aut C2312012-C2^3.2(C3xF5)480,966
C23.3(C3×F5) = C3×C23.2F5φ: C3×F5/C3×D5C2 ⊆ Aut C23240C2^3.3(C3xF5)480,292
C23.4(C3×F5) = C6×C22.F5φ: C3×F5/C3×D5C2 ⊆ Aut C23240C2^3.4(C3xF5)480,1058
C23.5(C3×F5) = C2×C6×C5⋊C8central extension (φ=1)480C2^3.5(C3xF5)480,1057

׿
×
𝔽